Search results for "pincer complexes"

showing 6 items of 6 documents

Neutral Organometallic Halogen Bond Acceptors: Halogen Bonding in Complexes of PCPPdX (X = Cl, Br, I) with Iodine (I(2)), 1,4-Diiodotetrafluorobenzen…

2012

The behavior of a sterically crowded neutral pincer {2,6-bis[(di-t-butylphosphino)methyl]-phenyl}palladium (PCPPd) halides, PCPPdX (X = Cl, Br or I), as XB acceptors with strong halogen bond (XB) donors, iodine (I2), 1,4-diiodotetrafluorobenzene (F4DIBz), and 1,4-diiodooctafluorobutane (F8DIBu) were studied in the solid state. The co-crystallization experiments afforded high-quality single crystals of XB complexes PCPPdCl–I2 (1a), PCPPdBr–I2 (2a), PCPPdI–I2(3a), PCPPdCl–F4DIBz (1b), PCPPdBr–F4DIBz (2b), and PCPPdBr–F8DIBu (2c). The 1:1 iodine complexes (1a, 2a, and 3a) all showed a strong halogen bonding interaction, the reduction of the sum of the van der Waals radii of halogen to iodine b…

Halogen bond010405 organic chemistryHydrogen bondChemistrySolid-statePalladium chlorideGeneral ChemistryCrystal structure010402 general chemistryCondensed Matter Physics01 natural sciencesArticle0104 chemical sciences3. Good healthCrystallographyComputational chemistrypalladium; pincer complexes; halides; halogen bondHalogenGeneral Materials ScienceCenter (algebra and category theory)ta116Crystal growthdesign
researchProduct

Atom Transfer Radical Addition Catalyzed by Ruthenium–Arene Complexes Bearing a Hybrid Phosphine–Diene Ligand

2018

International audience; The synthesis and characterization of a series of arene ruthenium complexes bearing either (3,5-cycloheptadienyl)diphenylphosphine or (cycloheptyl)-diphenylphosphine are reported. Upon irradiation or heating, all these complexes lose their arene ligand but then exhibit a different behavior depending on the nature of the phosphine ligand. (Cycloheptadienyl)phosphine complexes 1 and 3 give a cationic dinuclear Ru complex 5 for which the two Ru atoms are bridged by three chlorido ligands and flanked by two tridendate (cycloheptadienyl)phosphines. (Cycloheptyl)-diphenylphosphine complexes 2 and 4 undergo arene exchange when toluene is used as solvent or degrade in dithlo…

Dieneeffective core potentialsprecursorchemistry.chemical_element010402 general chemistrychemistry01 natural sciencesMedicinal chemistryAdductInorganic Chemistrychemistry.chemical_compoundMoiety[CHIM.COOR]Chemical Sciences/Coordination chemistryarylationPhysical and Theoretical ChemistryDiphenylphosphine010405 organic chemistryAtom-transfer radical-polymerizationLigand[CHIM.ORGA]Chemical Sciences/Organic chemistryOrganic Chemistry[CHIM.CATA]Chemical Sciences/Catalysismolecular calculations0104 chemical sciencesRutheniumkharasch reactionatrc reactionschemistrypolymerizationpincer complexesmetathesisPhosphine
researchProduct

3D Printed Palladium Catalyst for Suzuki-Miyaura Cross-coupling Reactions

2020

Selective laser sintering (SLS) 3d printing was utilized to manufacture a solid catalyst for Suzuki-Miyaura cross-coupling reactions from polypropylene as a base material and palladium nanoparticles on silica (SilicaCat Pd(0)R815-100 by SiliCycle) as the catalytically active additive. The 3d printed catalyst showed similar activity to that of the pristine powdery commercial catalyst, but with improved practical recoverability and reduced leaching of palladium into solution. Recycling of the printed catalyst led to increase of the induction period of the reactions, attributed to the pseudo-homogeneous catalysis. The reaction is initiated by oxidative addition of aryl iodide to palladium nano…

3d printedMaterials scienceNANOPARTICLE116 Chemical sciences3D printingNanoparticle010402 general chemistry01 natural sciencesCatalysisCoupling reactionlaw.inventionInorganic ChemistrykatalyytitlawMIZOROKI-HECK3D-tulostuspalladium nanoparticlesselective laser sinteringPhysical and Theoretical ChemistryFILTERSSuzuki-Miyaura cross-couplingcatalysis010405 organic chemistrybusiness.industry3d printingOrganic ChemistryPINCER COMPLEXESPalladium nanoparticlespalladium0104 chemical sciencesSelective laser sinteringChemical engineeringnanohiukkaset221 Nano-technologybusinessPalladium catalyst
researchProduct

[2,6-Bis(di-tert-butylphosphinomethyl)phenyl-κ3P,C1,P′](trifluoroacetato)palladium(II)

2010

The Pd(II) atom in the title compound, [Pd(C(2)F(3)O(2))(C(24)H(43)P(2))], adopts a distorted square-planar geometry with the P atoms in a trans arrangement, forming two five-membered chelate rings. Four intra-molecular C-H⋯O hydrogen bonds occur. The crystal packing reveals one weak inter-molecular C-H⋯O hydrogen bond, which self-assembles the mol-ecules into infinite chains parallel to the b axis.

Metal-Organic PapersChemistryHydrogen bondchemistry.chemical_elementGeneral ChemistryCondensed Matter PhysicsBioinformaticspalladium ; pincer complexes ; hydrogen bonding ; X-ray structureCrystalCrystallographyAtomGeneral Materials ScienceChelationPalladiumActa Crystallographica Section E Structure Reports Online
researchProduct

Preparation of potentially porous, chiral organometallic materials through spontaneous resolution of pincer palladium conformers.

2013

Understanding the mechanism by which advanced materials assemble is essential for the design of new materials with desired properties. Here, we report a method to form chiral, potentially porous materials through spontaneous resolution of conformers of a PCP pincer palladium complex ({2,6-bis[(di-t-butylphosphino)methyl]phenyl}palladium(II)halide). The crystallisation is controlled by weak hydrogen bonding giving rise to chiral qtz-nets and channel structures, as shown by 16 such crystal structures for X = Cl and Br with various solvents like pentane and bromobutane. The fourth ligand (in addition to the pincer ligand) on palladium plays a crucial role; the chloride and the bromide primaril…

crystal structuretermoanalyysichemistry.chemical_elementCrystal structurekiderakenne010402 general chemistryjauhe röntgen diffraktioCrystallography X-Ray01 natural scienceshuokoiset materiaalitpalladium kompleksiInorganic ChemistryMolecular recognitionOrganometallic CompoundsMoleculePincer ligandta116palladium pincer complexes; hexagonal channels; self-assembly; weak interactionssingle crystal X-ray diffractionpowder X-ray diffractionorganometalliMolecular Structure010405 organic chemistryChemistryStereoisomerismpalladium complexyksikide röntgen diffraktio0104 chemical sciencesPincer movementChemistryCrystallographySelf-assemblyporous materialsPorosityPalladiumMonoclinic crystal systemPalladiumDalton transactions (Cambridge, England : 2003)
researchProduct

Intermolecular hydrogen bonding in isostructural pincer complexes [OH-(t-BuPOCOPt-Bu)MCl] (M = Pd and Pt)

2019

In the crystal structure of the isostructural title compounds, namely {2,6-bis[(di-tert-butylphosphanyl)oxy]-4-hydroxyphenyl}chloridopalladium(II), [Pd(C22H39O3P2)Cl], 1, and {2,6-bis[(di-tert-butylphosphanyl)oxy]-4-hydroxyphenyl}chloridoplatinum(II), [Pt(C22H39O3P2)Cl], 2, the metal centres are coordinated in a distorted square-planar fashion by the POCOP pincer fragment and the chloride ligand. Both complexes form strong hydrogen-bonded chain structures through an interaction of the OH group in the 4-position of the aromatic POCOP backbone with the halide ligand. © 2019.

lcsh:Chemistrycrystal structurelcsh:QD1-999pincer complexesplatinum540palladiumhydrogen bondingActa Crystallographica Section E: Crystallographic Communications
researchProduct